The Addition Formula for Jacobi Polynomials
نویسنده
چکیده
Recently the author derived a Laplace integral representation, a product formula and an addition formula for Jacobi polynomials Ppfi). The results are (1) (2) and (3) * j, ,I " (~0~2 0-f-2 sin2 0 + ir cos #I sin 28)n * ' P$ycos 281) PFycos 282) 2&x + 1) Pgq 1) Pfq 1)-= l/22 qa-p)r(/l+#. . .
منابع مشابه
The coefficients of differentiated expansions of double and triple Jacobi polynomials
Formulae expressing explicitly the coefficients of an expansion of double Jacobi polynomials which has been partially differentiated an arbitrary number of times with respect to its variables in terms of the coefficients of the original expansion are stated and proved. Extension to expansion of triple Jacobi polynomials is given. The results for the special cases of double and triple ultraspher...
متن کاملJacobi functions: the addition formula and the positivity of the dual convolution structure
We prove an addition formula for Jacobi functions r ~' ~) (~17_~-~ ) analogous to the known addition formula for Jacobi polynomials. We exploit the positivity of the coefficients in the addition formula by giving the following application. We prove that the product of two Jacobi functions of the same argument has a nonnegative Fourier-Jacobi transform. This implies that the convolution structur...
متن کاملSolving the fractional integro-differential equations using fractional order Jacobi polynomials
In this paper, we are intend to present a numerical algorithm for computing approximate solution of linear and nonlinear Fredholm, Volterra and Fredholm-Volterra integro-differential equations. The approximated solution is written in terms of fractional Jacobi polynomials. In this way, firstly we define Riemann-Liouville fractional operational matrix of fractional order Jacobi polynomials, the...
متن کاملJacobi–trudy Formula for Generalised Schur Polynomials
X iv :0 90 5. 25 57 v2 [ m at h. R T ] 1 0 Ju n 20 09 JACOBI–TRUDY FORMULA FOR GENERALISED SCHUR POLYNOMIALS A.N. SERGEEV AND A.P. VESELOV Abstract. Jacobi–Trudy formula for a generalisation of Schur polynomials related to any sequence of orthogonal polynomials in one variable is given. As a corollary we have Giambelli formula for generalised Schur polynomials.
متن کاملOn the Limit from q-Racah Polynomials to Big q-Jacobi Polynomials
A limit formula from q-Racah polynomials to big q-Jacobi polynomials is given which can be considered as a limit formula for orthogonal polynomials. This is extended to a multi-parameter limit with 3 parameters, also involving (q-)Hahn polynomials, little q-Jacobi polynomials and Jacobi polynomials. Also the limits from Askey–Wilson to Wilson polynomials and from q-Racah to Racah polynomials ar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004